Abstract

Mechanical stimuli are important signals in articular cartilage, but what mediates them is unknown. We have shown that extracellular-signal-regulated kinase was activated on cutting and loading articular cartilage, and deduced that this was due to the release of bFGF (basic fibroblast growth factor) from the tissue. bFGF was shown to be extracellular, and by immunohistochemistry, was present in the pericellular matrix of articular chondrocytes attached to the heparan sulphate proteoglycan perlecan. We propose a novel mechanotransduction model, whereby pericellular bFGF, a short distance from the cell surface, becomes available to the cell surface tyrosine kinase receptors when articular cartilage is loaded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.