Abstract

Basic fibroblast growth factor (bFGF) is well known as a potent angiogenic factor playing a crucial role in wound-healing processes. Apatitic substrates such as hydroxyapatite and carbonated apatite (CA) could be potential carriers of growth factors because of their physicochemical similarities to bone mineral. These materials have been compared for their bFGF adsorption and release properties. The adsorption of the growth factor was higher on carbonated apatite than on hydroxyapatite, probably owing to environments with labile nonapatitic CO3(2-) and HPO4(2-) groups, along with a higher specific surface area which gives the CA a higher surface reactivity. These environments can be exchanged very rapidly, leading to the release of bFGF. The controlled release of adsorbed growth factor from carbonated apatite could provide means of improving bone healing in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.