Abstract

Hypoxic pulmonary vasoconstriction (HPV) matches lung perfusion with ventilation which tends to optimize pulmonary gas exchange. Investigations using genetically engineered mice represent a promising approach to understand the underlying mechanisms. Our goal was to characterize basic features of HPV in the isolated buffer-perfused and ventilated mouse lung system. HPV was reproducible for several hours when ventilating the lungs with 1% O2 (10 min) alternated with normoxic ventilation periods (21% O2, 15 min). HPV was well elicitable and most constant using Krebs-Henseleit buffer with the addition of hydroxyethylamylopectin as an oncotic agent. Inhibition of both lung NO and prostanoid formation amplified HPV in an over-additive fashion. HPV was higher in BALB/c mive as compared to C57BL/6 mice, and was approximately threefold enhanced under positive pressure ventilation as compared to negative pressure ventilation. A three hour hypoxic ventilation period resulted in a biphasic vasoconstrictor response with loss of posthypoxic vasodilatation. In summary, we have characterised HPV and established an experimental set-up optimized for investigation of the basic mechanisms of HPV in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.