Abstract
In the previous paper, the thermodynamic behavior of materials for nonequilibrium processes was discussed in continuum mechanics. The spatial nonequilibrium of thermodynamic quantities have been treated as their nonlocalities there. Then balance laws for the above materials under nonequilibrium processes have been derived introducing the nonlocalities of thermodynamic quantities. In the present paper, the constitutive equations for the above materials are constructed on the basis of the previous results to satisfy the thermodynamic relations which are expressed by the newly defined thermodynamic potential and by the dissipative function. Moreover, the basic equation system is shown, substituting the above constitutive equations into balance laws. Furthermore, the relationships among the moduli defined in the constitutive equations, are indicated. As a result, it is clarified that the heat conduction depends on not only the temperature gradient but also microscopic gradient and microscopic curvature of temperature under nonequilibrium processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.