Abstract

Reperfusion injury is insufficiently addressed in current clinical management of acute limb ischemia. Controlled reperfusion carries an enormous clinical potential and was tested in a new reality-driven rodent model. Acute hind-limb ischemia was induced in Wistar rats and maintained for 4 hours. Unlike previous tourniquets models, femoral vessels were surgically prepared to facilitate controlled reperfusion and to prevent venous stasis. Rats were randomized into an experimental group (n=7), in which limbs were selectively perfused with a cooled isotone heparin solution at a limited flow rate before blood flow was restored, and a conventional group (n=7; uncontrolled blood reperfusion). Rats were killed 4 hours after blood reperfusion. Nonischemic limbs served as controls. Ischemia/reperfusion injury was significant in both groups; total wet-to-dry ratio was 159+/-44% of normal (P=0.016), whereas muscle viability and contraction force were reduced to 65+/-13% (P=0.016) and 45+/-34% (P=0.045), respectively. Controlled reperfusion, however, attenuated reperfusion injury significantly. Tissue edema was less pronounced (132+/-16% versus 185+/-42%; P=0.011) and muscle viability (74+/-11% versus 57+/-9%; P=0.004) and contraction force (68+/-40% versus 26+/-7%; P=0.045) were better preserved than after uncontrolled reperfusion. Moreover, subsequent blood circulation as assessed by laser Doppler recovered completely after controlled reperfusion but stayed durably impaired after uncontrolled reperfusion (P=0.027). Reperfusion injury was significantly alleviated by basic modifications of the initial reperfusion period in a new in vivo model of acute limb ischemia. With this model, systematic optimizations of according protocols may eventually translate into improved clinical management of acute limb ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.