Abstract

BackgroundDeficiency in thymidine kinase 2 (TK2) or p53 inducible ribonucleotide reductase small subunit (p53R2) is associated with tissue specific mitochondrial DNA (mtDNA) depletion. To understand the mechanisms of the tissue specific mtDNA depletion we systematically studied key enzymes in dTMP synthesis in mitochondrial and cytosolic extracts prepared from adult rat tissues.ResultsIn addition to mitochondrial TK2 a cytosolic isoform of TK2 was characterized, which showed similar substrate specificity to the mitochondrial TK2. Total TK activity was highest in spleen and lowest in skeletal muscle. Thymidylate synthase (TS) was detected in cytosols and its activity was high in spleen but low in other tissues. TS protein levels were high in heart, brain and skeletal muscle, which deviated from TS activity levels. The p53R2 proteins were at similar levels in all tissues except liver where it was ~ 6-fold lower. Our results strongly indicate that mitochondria in most tissues are capable of producing enough dTTP for mtDNA replication via mitochondrial TK2, but skeletal muscle mitochondria do not and are most likely dependent on both the salvage and de novo synthesis pathways.ConclusionThese results provide important information concerning mechanisms for the tissue dependent variation of dTTP synthesis and explained why deficiency in TK2 or p53R2 leads to skeletal muscle dysfunctions. Furthermore, the presence of a putative cytosolic TK2-like enzyme may provide basic knowledge for the understanding of deoxynucleoside-based therapy for mitochondrial disorders.

Highlights

  • Deficiency in thymidine kinase 2 (TK2) or p53 inducible ribonucleotide reductase small subunit (p53R2) is associated with tissue specific mitochondrial DNA depletion

  • In the salvage pathway Thymidylate or thymidine 5′monophosphate (dTMP) is produced by thymidine phosphorylation catalysed by thymidine kinases (TK1 and TK2) and in the de novo pathway by deoxyuridylate methylation catalysed by thymidylate synthase (TS)

  • To understand why TK2 and P53 inducible ribonucleotide reductase small subunit (p53R2) deficiency led to mitochondrial DNA (mtDNA) depletion syndromes (MDS) we studied the levels and distribution of enzymes in dTMP synthesis in major adult rat tissues

Read more

Summary

Introduction

Deficiency in thymidine kinase 2 (TK2) or p53 inducible ribonucleotide reductase small subunit (p53R2) is associated with tissue specific mitochondrial DNA (mtDNA) depletion. To understand the mechanisms of the tissue specific mtDNA depletion we systematically studied key enzymes in dTMP synthesis in mitochondrial and cytosolic extracts prepared from adult rat tissues. Cytosolic deoxycytidine kinase (dCK), mainly expressed in lymphoid tissues, catalyzes the phosphorylation of deoxycytidine (dC) to dCMP, which can be further phosphorylated to dCTP or deaminated to dUMP and used for dTMP synthesis (Fig. 1) [8, 9]. In post mitotic tissues ribonucleotide reductase (RNR) activity is minimal since the expression of the small subunit is Sphase specific [10, 11]. To our knowledge the levels of TS and p53R2 and the distribution of cytosolic deoxynucleoside kinases in adult animal tissues have not been reported

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call