Abstract

The molecular mechanism of action of presynaptically toxic secreted phospholipases A 2 (sPLA 2s) isolated from snake venoms is not completely understood. It has been proposed that the positive charge in the β-structure region is important for their toxic activity. To test this hypothesis, we characterised several mutants of ammodytoxin A (AtxA) possessing substitution of all five basic residues in this region. The mutations had relatively little influence on the catalytic activity of AtxA, either on charge-neutral or anionic phospholipid vesicles. An exception was R72 when replaced by a hydrophobic (higher activity) or an acidic (lower activity) residue. Lethal potencies of the eight single site mutants were up to four times lower than that of the wild-type, whereas the triple mutant (K74S/H76S/R77L) was 13-fold less toxic. The substitutions also lowered the affinity of the toxin, slightly to moderately, for the neuronal receptors R25 and R180. Interaction with calmodulin was only slightly affected by substitutions of K86, more by those of the K74/H76/R77 cluster and most by those of R72 (up to 11-fold lower binding affinity). The results clearly indicate that the basic amino acid residues in the β-region of AtxA contribute to, but are not necessary for, its neurotoxic effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.