Abstract

We propose the QoS-aware BS-selection and the corresponding resource-allocation schemes for downlink multi-user transmissions over the distributed multiple-input-multiple-output (MIMO) links, where multiple location-independent base-stations (BS), controlled by a central server, cooperatively transmit data to multiple mobile users. Our proposed schemes aim at minimizing the BS usages and reducing the interfering range of the distributed MIMO transmissions, while satisfying diverse statistical delay-QoS requirements for all users, which are characterized by the delay-bound violation probability and the effective capacity technique. Specifically, we propose two BS-usage minimization frameworks to develop the QoS-aware BS-selection schemes and the corresponding wireless resource-allocation algorithms across multiple mobile users. The first framework applies the joint block-diagonalization (BD) and probabilistic transmission (PT) to implement multiple access over multiple mobile users, while the second one employs time-division multiple access (TDMA) approach to control multiple users' links. We then derive the optimal BS-selection schemes for these two frameworks, respectively. In addition, we further discuss the PT-only based BS-selection scheme. Also conducted is a set of simulation evaluations to comparatively study the average BS-usage and interfering range of our proposed schemes and to analyze the impact of QoS constraints on the BS selections for distributed MIMO transmissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.