Abstract

Because the spectrum of services available in modern telecommunication networks is constantly expanding, security has become increasingly important. Simultaneously, in an era of constant progress in mathematics and computing, the security of existing cryptographic solutions becomes questionable. Quantum Key Distribution (QKD) is a promising secret key agreement primitive that enables long-awaited practical Information-Theoretical Secure (ITS) communications. The key generation rate, however, is one of the limitations of its widespread application to secure high throughput data flows. This paper addresses the aforementioned limitation by employing perfectly correlated bases selection defined by the output of Pseudo-Random Functions based on the keyed-Hash Message Authentication Code construction. In theory, the proposed variant of the BB84 scheme is ITS, reduces memory requirements, and reduces communication overhead during the post-processing stage. It can benefit QKD networks as a service by increasing capacity and accommodating users with varying security needs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.