Abstract
We give a combinatorial description (including explicit differential-form bases) for the cohomology groups of the space of n distinct nonzero complex numbers, with coefficients in rank-one local systems which are of finite monodromy around the coordinate hyperplanes and trivial monodromy around all other hyperplanes. In the case where the local system is equivariant for the symmetric group, we write the cohomology groups as direct sums of inductions of one-dimensional characters of subgroups. This relies on an equivariant description of the Orlik-Solomon algebras of full monomial reflection groups (wreath products of the symmetric group with a cyclic group). The combinatorial models involved are certain representations of these wreath products which possess bases indexed by labelled trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.