Abstract
We have developed an enhanced form of reduced representation bisulfite sequencing with extended genomic coverage, which resulted in greater capture of DNA methylation information of regions lying outside of traditional CpG islands. Applying this method to primary human bone marrow specimens from patients with Acute Myelogeneous Leukemia (AML), we demonstrated that genetically distinct AML subtypes display diametrically opposed DNA methylation patterns. As compared to normal controls, we observed widespread hypermethylation in IDH mutant AMLs, preferentially targeting promoter regions and CpG islands neighboring the transcription start sites of genes. In contrast, AMLs harboring translocations affecting the MLL gene displayed extensive loss of methylation of an almost mutually exclusive set of CpGs, which instead affected introns and distal intergenic CpG islands and shores. When analyzed in conjunction with gene expression profiles, it became apparent that these specific patterns of DNA methylation result in differing roles in gene expression regulation. However, despite this subtype-specific DNA methylation patterning, a much smaller set of CpG sites are consistently affected in both AML subtypes. Most CpG sites in this common core of aberrantly methylated CpGs were hypermethylated in both AML subtypes. Therefore, aberrant DNA methylation patterns in AML do not occur in a stereotypical manner but rather are highly specific and associated with specific driving genetic lesions.
Highlights
Acute myeloid leukemia (AML) is considered to be a genetically heterogeneous group of diseases, featuring functionally distinct somatic mutations and chromosomal translocations [1]
Acute myeloid leukemias (AML) are a group of malignancies that originate in the bone marrow
DNA methylation plays a role in gene expression regulation, and abnormal distribution of DNA methylation has been observed in many cancers, including AML
Summary
Acute myeloid leukemia (AML) is considered to be a genetically heterogeneous group of diseases, featuring functionally distinct somatic mutations and chromosomal translocations [1]. Many of these mutations involve aberrant transcriptional and epigenetic regulators, such as translocations involving chromosome 11q23, which fuse the N-terminal portion of the Mixed Lineage Leukemia protein (MLL) to various fusion partners. AML associated heterozygous somatic mutations of isocitrate dehydrogenase 1 or 2 (IDH1 or 2) were shown to result in a gain of function enzyme that uses alpha-ketoglutarate (aKG) as a substrate to generate the oncometabolite 2-hydroxyglutarate (2HG) [5]. Accumulation of 2HG inhibits the function of aKGdependent enzymes including the TET family of dioxygenases [6–
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.