Abstract
Organ and tissue integrity is often maintained in animals by a specialized extracellular matrix structure called the basement membrane (BM). Accumulated evidence indicates that BM remodeling occurs during development and tumor invasion. Although the BM organizes and functions at the organ level, most past studies have explored its biochemical and in vitro properties. In this study, we monitor the BM in vivo during developmental tissue invasion for disc eversion and tumor invasion in Drosophila and modulate BM integrity with genetic alterations affecting either the whole organism or the targeted discs or tumors. We observe that the degradation of BM by the discs or the tumors is an early event during invasion processes and that preventing BM degradation completely blocks both tissue and tumor invasion, indicating that modulation of BM is essential for developmental and tumor invasion. Furthermore, elements of the invasion machinery, including JNK-induced matrix metalloproteinase (MMP) expression, are shared by both disc eversion and tumor invasion processes. Moreover, we show that although expression of MMP inhibitor, TIMP, is sufficient to halt developmental invasion, inhibition of proteases by both TIMP and RECK are required to block tumor invasion. These data suggest that tumor cells have a more robust invasion mechanism and could acquire metastatic behavior by co-opting developmental invasion programs. This type of co-option may be a general feature contributing to the progression of tumors. Finally, although past efforts using MMP inhibitors have not yielded much success, our results strongly argue that BM modulation could be a critical target for cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.