Abstract

AbstractBasement is constituted of rocks which belong to a previous orogenic cycle which have been reactivated and incorporated into a younger cycle. Basement massifs may be classified according to their relative position in an orogen as external or internal massifs. They may also be categorized according to their role in deformation, as thrust‐related, fold‐related and composite massifs.All Appalachian external massifs were transported following their removal from the overridden edge of the ancient North American continental margin. Most of the internal massifs are also probably transported, but several (Pine Mountain and Sauratown Mountains) may be present as windows exposing parautochthonous basement beneath the main thrust sheet. The latter reside immediately west of the low (west) to high (east) gravity gradient which probably outlines the old edge of Grenvillian crust. Reactivated crustal material generated during early Palaeozoic orogeny plays the same mechanical role in reactivation as basement from the previous Grenville cycle. The domes of the Bronson Hill anticlinorium cored with Ordovician or older gneisses illustrate this behaviour.Basement (Grenville) massifs are distributed throughout the Appalachians as a belt of external massifs (Blue Ridge, Reading Prong, Hudson and Berkshire Highlands, Green Mountains, and Long Range Mountains) along the western edge of the crystalline metamorphic core. Additionally, internal massifs are also present (Pine Mountain belt, Tallulah Falls and Toxaway domes, Sauratown Mountains anticlinorium, State Farm gneiss dome, Baltimore Gneiss domes, Mine Ridge anticline, and Chain Lakes massif).Basement internal massifs probably served to localize thrusts by causing them to ramp over and around the massifs. Their antiformal shape may in part be as much related to thrust mechanics as to folding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call