Abstract

BackgroundCurrent rehabilitation for individuals poststroke focuses on increasing walking speed because it is an indicator of community walking ability and quality of life. Propulsive force generated from the paretic limb is critical to walking speed and may reflect actual neural recovery that restores the affected neural systems. A wide variation across individuals in the improvements in paretic propulsive force was observed following an intervention that targeted paretic propulsive force. This study aimed to determine if specific baseline characteristics can be used to predict patients who would respond to the intervention.MethodsParticipants (N = 19) with chronic poststroke hemiparesis walked at their self-selected and maximal walking speeds on a treadmill before and after a 12-week gait training program. Propulsive forces from the paretic limb were analyzed. Pearson correlation coefficient was used to determine the relationships between (1) treatment gains in walking speed and propulsive force following intervention, and (2) treatment gains in propulsive force and baseline propulsive forces.ResultsTreatment gains in self-selected walking speed were correlated to treatment gains in paretic propulsive force following intervention. In addition, changes in paretic propulsive force between self-selected and maximal walking speeds at baseline were strongly correlated to treatment gains in paretic propulsive force.ConclusionsThe capacity to modulate paretic propulsive force, rather than the absolute propulsive force during self-selected or maximal walking speed, predicted treatment gains in propulsive force following the intervention. Findings from this research could help to inform clinicians and researchers to target the appropriate patient population for rehabilitation interventions.

Highlights

  • Current rehabilitation for individuals poststroke focuses on increasing walking speed because it is an indicator of community walking ability and quality of life

  • We hypothesized that an intervention combining treadmill gait training at maximal speed and functional electrical stimulation applied to the paretic ankle musculature (FastFES) would facilitate the translation of increased plantarflexor activity into forward propulsion, resulting in increased walking speed

  • As expected, treatment gain in walking speed was correlated to changes in paretic propulsive force following intervention (Fig. 1, p < 0.01)

Read more

Summary

Introduction

Current rehabilitation for individuals poststroke focuses on increasing walking speed because it is an indicator of community walking ability and quality of life. A wide variation across individuals in the improvements in paretic propulsive force was observed following an intervention that targeted paretic propulsive force. This study aimed to determine if specific baseline characteristics can be used to predict patients who would respond to the intervention. Our laboratory has designed an intervention that targets paretic propulsion in individuals poststroke to increase walking speed [14, 15]. A previous preliminary study from our laboratory has reported improvements in paretic propulsive force following 12-weeks of FastFES intervention [14], we observed a wide variation across individuals in the improvements in paretic propulsive force in response to the intervention. We hypothesized that baseline measurement of propulsive force may reflect those individuals most likely to increase propulsive force with FastFES training. Findings from this research would better inform clinicians and researchers to target the appropriate patient population for rehabilitation

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call