Abstract

By generating ultrasonic waves at two different frequencies onto a cracked structure, modulations due to crack-induced nonlinearity can be observed in the corresponding ultrasonic response. This nonlinear wave modulation phenomenon has been widely studied and proven capable of detecting a fatigue crack at a very early stage. However, under field conditions, other exogenous vibrations exist and the modulation components can be buried under ambient noises, making it difficult to extract the modulation components simply by using a spectral density function. In this study, the nonlinear modulation components in the ultrasonic response were extracted using a spectral correlation function (the double Fourier transform) with respect to time and time lag of a signal’s autocorrelation. Using spectral correlation, noise or interference, which is spectrally overlapped with the nonlinear modulation components in the ultrasonic response, can be effectively removed or reduced. Only the nonlinear modulation components are accentuated at specific coordinates of the spectral correlation plot. A damage feature is defined by comparing the spectral correlation value between nonlinear modulation components with other spectral correlation values among randomly selected frequencies. Then, by analyzing the statistical characteristics of the multiple damage feature values obtained from different input frequency combinations, fatigue cracks can be detected without relying on baseline data obtained from the pristine condition of the target structure. In the end, an experimental test was conducted on aluminum plates with a real fatigue crack and the test signals were contaminated by simulated noises with varying signal-to-noise ratios. The results validated the proposed technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call