Abstract

The construction of a heat exchange element based on a matrix of silicon whiskers for thermal stabilization systems of miniature heat sources with specific power up to 100 W/cm2 operating over a wide range of ambient temperatures is proposed. Based on the developed mathematical model of convective heat transfer in a microchannel compact heat exchanger with a developed heat exchange surface, numerical simulation of the hydrodynamics and heat transfer processes for various configurations of microchannel insertions was carried out. Fields of pressures, flow velocities, coolant temperatures and matrix from silicon single crystals have been obtained in a wide range of coolant flow rates, criteria dependencies for the Nusselt number and pressure losses of various geometric configurations of heat exchangers have been determined. Critical operation modes are investigated; optimization directions are proposed. According to the developed technology, prototypes for testing have been manufactured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.