Abstract

The vector theory to calculate the optical path length (OPL) of the rays passing through a capillary tube was given and the OPLs including the collimated lens in 3D space were calculated, the interferograms produced by the capillary tube were simulated. A pinhole localized at the focal point of the collimated lens was seen as a point source of light. Based on ray-tracing, the OPL distribution from the point source of light, passing by the collimated lens, a cylindrical lens, the capillary tube and a screen was calculated. Because the huge calculation in the ray-tracing, a distributed calculating net based on MATLAB Distributed Computing Engine (MDCE) was established to save time. In order to get the simulated interferograms from the envelope of the OPLs, Delaunay triangulation algorithm and cubic spline interpolation were used. We record the interferograms of the capillary tube filled with liquids with different refractive indices and compared with the simulated interferograms. The results showed the two coincided well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call