Abstract
In order to solve the problem that the existing LoRaWAN adaptive data rate control algorithm leads to low data transmission efficiency in the case of network congestion, a method combining a fuzzy logistic regression classifier and an improved adaptive data rate controller adjusting the avoidance time was proposed. The classifier could obtain the predicted congestion state by logistic regression learning. The data rate controller determined the data rate adjustment scheme according to the predicted congestion state. The experimental results showed that when the network congestion occurred in about 12s, the number of packet loss by the LoRaWAN default method was higher than that by the method in the research. The value of ADR_ MSG_CNT of the 15 source nodes in the method was 30 within 0–10 s, while the RCV_ACK_CNT of some nodes was 0. It proved that the method was more efficient than the original LoRaWAN adaptive data rate control algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.