Abstract

Due to the weak monitoring equipment for low- and medium-pressure gas pipelines, it is not easy to identify small flow leaks. The detection methods are mostly traditional manual inspections or night pressure-maintaining leak detection methods, which cannot be automatically monitored and sensed immediately. The abnormal fluctuations in client traffic caused by pipeline leaks studied in this paper can locate and detect leak locations more effectively. This paper analyzes the theoretical formula of leakage location based on flow data and finds out how to use the abnormal fluctuation of user-side flow to detect and locate gas pipeline leakage. First of all, this article uses the simulation software Pipeline Studio to construct the medium and low-pressure pipeline model. On this basis, 6 sets of leakage conditions were designed and simulated dynamically. Finally, the simulation results are analyzed, and the results show that: 1) The advisable monitoring period for monitoring abnormal fluctuations of user-side traffic is 10s. 2) There are two relationships between abnormal flow fluctuations and leakage position. They are: when the leakage point is at the first 40% of the relative distance from the gas source, the disturbance amplitude first increases and then decreases, and at the last 60%, it continues to decrease.; The closer the leak is to the user end, the more significant the abnormal flow fluctuations will be. On the contrary, the smaller the abnormal flow fluctuations will be; 3) No matter where the leakage occurs, the abnormal flow fluctuations in the 2nd and 3rd seconds after the leak occurs tend to be consistent. The proposal of the advisable monitoring period and the relationship between abnormal fluctuations of flow and the location of leakage provides a theoretical basis for the use of abnormal fluctuations of user-side flow for gas pipeline leakage detection and location.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.