Abstract

AbstractWe have measured the CD, isotropic absorption, and LD of poly[d(A)]–poly[d(T)] and poly[d(AT)]–poly[d(AT)] in the vacuum‐uv spectral region. The reduced dichroism (LD divided by isotropic absorption) varied as a function of wavelength and was independent of shear gradient. Thus, the bases are not perpendicular to the helix axis in solution. Since the directions of the transition dipoles are known, the orientations of the bases in the polymers can be calculated from the reduced dichroism spectra. The results show that the base normals are tilted at angles greater than 25°, with respect to the helix axis, and thymine is tilted more than adenine for both polymers. The tilt axes of adenine and thymine are not parallel, indicating a large propeller twist. Space‐filling models of poly[d(A)]–poly[d(T)] and poly[(AT)]–poly[d(AT)] are built based on our results, and the conformations of the two (A + T) polymers in solution are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.