Abstract

Recently, wireless sensor networks (WSNs) have been progressively applied in various fields and areas. However, its limited energy resources is indisputably one of the weakest point that strongly affects the network's lifetime. A WSN consists of a sensor node set and a base station. The initial energy of each sensor node will be depleted continuously during data transmission to the base station either directly or through intermediate nodes, depending on the distance between sending and receiving nodes. This paper consider determining an optimal base station location such that the energy consumption is kept lowest, maximizing the network's lifetime and propose a nonlinear programming model for this optimizing problem. Our proposed method for solving this problem is to combine methods mentioned in [1] respectively named the centroid, the smallest total distances, the smallest total squared distances and two greedy methods. Then an improved greedy method using a LP tool provided in Gusek library is presented. Finally, all of the above methods are compared with the optimized solution over 30 randomly created data sets. The experimental results show that a relevant location for the base station is essential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.