Abstract
A base station (BS) identification algorithm which does not modify the transmitter hardware and digital terrestrial television broadcasting signal framework is proposed for single-frequency networks positioning system. Similar to the outlier detection in multi-object tracking environments, the BS identification is formulated as a data validation problem which is solved with gate construction. Compared with traditional gate algorithm, an additional mode probability parameter is introduced to describe the wireless channel condition and overcome its drawback in non-stationary wireless channel environments by the interacting multiple model approach. In the proposed algorithm, two parallel innovation statistical distribution deduction modes with line-of-sight and non-line-of-sight condition are employed to estimate the corresponding parameters, respectively. Then a combination scheme is utilised to mix the two estimated statistical parameters by the predicted mode probabilities and obtains the final innovation distribution. At last, gate parameter is calculated like traditional gate algorithm and the BS identification is achieved. Simulation results demonstrate its robustness and high performance in different scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.