Abstract

Excavations in soft clay underlain with an aquifer may be destabilized by hydraulic uplift. Previous studies on this subject are based mainly on field observations. Dewatering from the aquifer is a common method to improve base stability where ground settlement is not a major concern. Alternatively, piles readily installed as part of the top-down construction method for multi-propped excavation may be considered to provide base stability and minimize ground settlement outside the excavation. This paper presents results from two centrifuge tests that were conducted to simulate multi-propped excavations in-flight (with and without piles) in soft clay destabilized by hydraulic pressure from an underlying sand aquifer. Moreover, coupled three-dimensional finite element analyses were carried out to back-analyse the centrifuge tests. Numerical parametric studies were also conducted to study the influence of pile length on the effectiveness of base stabilization. It is revealed that both for excavations with and without piles, the artesian pressure required to initiate uplift inside the excavation is about 1.2 times the overburden pressure of the clay. By using “anti-uplift” piles inside the excavation, the ultimate hydraulic uplift resistance increases by 16%, while the uplift movement can be reduced by 80%. The presence of piles also increases the passive resistance in front of the wall by 70%, but reduces the mobilized undrained shear strength, cu, of clay by 53%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.