Abstract

The near wake flow field associated with hypersonic blunt bodies is characterized by complex physical phenomena resulting in both steady and time dependent pressure loadings on the base of the vehicle. Here, we focus on the unsteady fluid dynamic pressure fluctuation behavior as a vibratory input loading. Typically, these flows are characterized by a locally low-pressure, separated flow region with an unsteady formation of vortical cells that are locally produced and convected downstream into the far-field wake. This periodic production and transport of vortical elements is very-well known from classical incompressible fluid mechanics and is usually termed as the (Von) Karman vortex street. While traditionally discussed within the scope of incompressible flow, the periodic vortex shedding phenomenon is known for compressible flows as well. To support vehicle vibratory loading design computations, we examine a suite of analytical and high-fidelity computational models supported by dedicated experimental measurements. While large scale simulation approaches offer very high-quality results, they are impractical for design-level decisions, implying that analytically derived reduced order models are essential. The major portions of this effort include an examination of the DeChant-Smith Power Spectral Density (PSD) [1] model to better understand both overall Root Mean Square (RMS) magnitude and functional maximum associated with a critical vortex shedding phenomenon. The critical frequency is examined using computational, experiments and an analytical shear layer frequency model. Finally, the PSD magnitude maximum is studied using a theory-based approach connecting the PSD to the spatial correlation that strongly supports the DeChant-Smith PSD model behavior. These results combine to demonstrate that the current employed PSD models provide plausible reduced order closures for turbulent base pressure fluctuations for high Reynolds number flows over range of Mach numbers. Access to a reliable base pressure fluctuation model then permits simulation of bluff body vibratory input

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.