Abstract
The protein-DNA interaction dynamics is studied by modeling the DNA bases as classical spins in a coupled spin system, which are bosonized and coupled to thermal phonons and longitudinal motion of the protein molecule in the nonviscous limit. The nonlinear dynamics of this protein-DNA complex molecular system is governed by the completely integrable nonlinear Schrödinger (NLS) equation which admits N -soliton solutions. The soliton excitations of the DNA bases in the two strands make localized base-pair opening and travel along the DNA chain in the form of a bubble. This may characterize the bubble generated during the transcription process, when an RNA polymerase binds to a promoter site in the DNA double helical chain. When the protein-DNA molecular system interacts with the surrounding viscous solvating water medium, the dynamics is governed by a perturbed NLS equation. This equation is solved using a multiple scale perturbation analysis, by treating the viscous effect as a weak perturbation, and the results show that the viscosity of the solvent medium damps out the soliton as time progresses.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.