Abstract

DNA deformability and differential hydration are crucial determinants of biological processes ranging from genetic material packaging to gene expression; their associative details, however, remain inadequately understood. Herein, we report investigations of the dynamic and thermodynamic responses of the local hydration of a variety of base pair sequences. Leveraging in silico sampling and our in-house analyses, we first report the local conformational propensity of sequences that are either predisposed toward the canonical A- or B-conformations or are restrained to potential transitory pathways. It is observed that the transition from the unrestrained A-form to the B-form leads to lengthwise structural deformation. The insertion of intermittent -(CG)- base pairs in otherwise homogeneous -(AT)- sequences bears dynamical consequences for the vicinal hydration layer. Calculation of the excess (pair) entropy suggests substantially higher values of hydration water surrounding A conformations over the B- conformations. Applying the Rosenfeld approximation, we project that the diffusivity of water molecules proximal to canonical B conformation is least for the minor groove of the canonical B-conformation. We determine that structure, composition, and conformation specific groove dimension together influence the local hydration characteristics and, therefore, are expected to be important determinants of biological processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call