Abstract

Several naturally occurring purine and pyrimidine nucleosides contain an amide linkage as part of the heterocyclic aglycone. Enolization of the amide and conversion to leaving groups at the amide carbon atom permits base modification by addition-elimination types of processes. Although a number of methods have been developed over the years for accomplishing such conversions, the present Personal Account describes efforts from the Lakshman laboratories. Facile activation of the amido groups in nucleobases can be achieved with peptide-coupling agents. Subsequent reaction with nucleophiles then accomplishes the base modifications. In many cases, the activation and displacement steps can be done as two-step, one-pot processes, whereas in other cases, discrete storable activated nucleosides can be isolated for subsequent displacement reactions. Using such an approach a wide range of nucleoside base modifications is readily achievable. In many instances, mechanistic investigations have been conducted so as to understand the activation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.