Abstract

High-accuracy CBS-QB3(+) calculations were used to obtain the free energy barriers for several polycarbonates of interest to undergo alkoxide back-biting to give the corresponding epoxide and carbon dioxide. Free energy barriers to epoxide formation were modest for most polymeric alkoxides (12.7–17.4 kcal mol−1), and they were higher than for the same starting material to give cyclic carbonate (10.7–14.6 kcal mol−1). Poly(cyclopentene carbonate) differs: epoxide formation has a lower free energy barrier (13.3 kcal mol−1) than cyclic carbonate formation (19.9 kcal mol−1). These results explain why poly(cyclopentene carbonate) depolymerizes to cyclopentene oxide when treated with a strong base, whereas propylene and styrene polycarbonates depolymerize to their respective cyclic carbonates. Recycling via regeneration of the monomer represents the ideal method for producing material of the highest quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.