Abstract

Hydrogen is an attractive alternative energy vector to fossil fuels if effective methods for its storage and release can be developed. In particular, methanol, with a gravimetric hydrogen content of 12.6%, is a promising target for chemical hydrogen storage. To date, there are relatively few homogeneous transition metal compounds that catalyze the aqueous phase dehydrogenation of methanol to release hydrogen and carbon dioxide. In general, these catalysts utilize expensive precious metals and require a strong base. This paper shows that a pincer-supported Fe compound and a co-catalytic amount of a Lewis acid are capable of catalyzing base-free aqueous phase methanol dehydrogenation with turnover numbers up to 51 000. This is the highest turnover number reported for either a first-row transition metal or a base-free system. Additionally, this paper describes preliminary mechanistic experiments to understand the reaction pathway and propose a stepwise process, which requires metal–ligand cooperativity. This...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.