Abstract

Base excision repair (BER) is a co-ordinated DNA repair pathway that recognises and repairs chemically modified bases and DNA single strand breaks. It is essential for the maintenance of genome integrity and thus in the prevention of the development of human diseases, including premature ageing, neurodegenerative diseases and cancer. Within the cell, DNA is usually packaged with histone proteins to form chromatin which imposes major constraints on the capacity of cells to perform BER. Therefore chromatin remodelling, stimulated through histone post-translational modifications (PTMs) or ATP-dependent chromatin remodelling complexes (ACRs), are required to stimulate access to the DNA damage and therefore enhance the BER process. Despite this, the molecular mechanisms through which this is co-ordinated and the specific enzymes that promote chromatin remodelling required for BER remain elusive. In this review, we summarise the multitude of in vitro studies utilising mononucleosome substrates containing site-specific DNA base damage that demonstrate the requirement for chromatin remodelling to facilitate BER, particularly in occluded regions. We also highlight preliminary evidence to date for the identity of ACRs, their mechanisms and the role of histone PTMs in modulating the cellular capacity for BER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.