Abstract

Base excision repair is the main pathway for repair of oxidative base lesions in DNA. Mammalian cells must maintain genomic stability in their nuclear and mitochondrial genomes, which have different degrees of vulnerability to DNA damage. This study quantifies DNA glycosylase activity in mitochondria and nucleus from C57/BL 6 mouse tissues including brain, liver, heart, muscle, kidney, and testis. The activities of oxoguanine DNA glycosylase (OGG1), uracil DNA glycosylase, and endonuclease III homologue 1 (NTH1) were measured using oligonucleotide substrates with DNA lesions specific for each glycosylase. Mitochondrial content was normalized to citrate synthase activity and mitochondrial function was assessed by measuring cytochrome c oxidase (COX) activity. In nuclear and mitochondrial extracts, the highest DNA glycosylase activities were in testis. Brain and heart, tissues with the highest oxidative load, did not have higher levels of OGG1 or NTH1 activity than muscle or kidney, which are more glycolytic tissues. In general, mitochondrial extracts have lower DNA glycosylase activity than nuclear extracts. There was no correlation between glycosylase activities in the mitochondrial extracts and COX activity, suggesting that DNA repair enzymes may be regulated by a mechanism different from this mitochondrial enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.