Abstract

Large earthen-walled lysimeters at the San Dimas Experimental Forest in southern California present a unique opportunity to assess vegetation effects on biogeochemical processes and cation release by weathering in controlled soil-vegetation systems where archived samples of soil parent material are available for comparison. The lysimeters were filled in 1937 with homogenized fine sandy loam derived on site from the weathering of diorite, and planted in 1946 with scrub oak (Quercus dumosa) and Coulter pine (Pinus coulteri). Changes in base cation contents were measured in above-ground biomass, and total and exchangeable soil pools to a depth of 1 meter. All cations in the non-exchangeable soil pool decreased relative to the initial fill material, indicating release by weathering. Sodium and K were depleted from both exchangeable and non-exchangeable pools of the soils. Plant uptake of Na was minimal, whereas K storage in vegetation exceeded the loss from the exchangeable soil pool. In both soil-vegetation systems, but especially for oak, there was an increase in exchangeable Ca and Mg. For all base cations, storage in above-ground biomass was greater for oak, whereas losses by weathering from the non-exchangeable soil pool were greater under pine. Strong evidence supports biocycling as a controlling mechanism resulting in greater Ca and Mg release by weathering under pine. In addition, decreases in non-exchangeable Ca and Mg were strongly correlated to decrease in Si under oak, whereas no correlation was observed under pine. We conclude that weathering reactions or stoichiometry differed between vegetation types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call