Abstract

AbstractLong‐term nutrient supply in forest ecosystems is due to the dissolution of primary and secondary minerals in soils. The potential of nutrient release in 19 forest soils in a cool humid climate was examined. The soil profiles are classified as Alfisols (10), Spodosols (2), Entisols (4), Ultisols (1), and Mollisols (2), thus covering a gradient in soil fertility. Short‐term and long‐term release of calcium, magnesium, potassium, phosphorus, and aluminum was evaluated by a batch extraction using dilute nitric acid (0.1 M) for 2 hours, followed by 2 days (48 h), and 7 days (168 h). The solution was renewed after 2 and 50 hours extraction time. Nutrient pools expressed as g m–2 to soil depth 100 cm, and a base index (Ca2++ Mg2++ K+ (molc m–2) : Ca2+ + Mg2+ + K+ + Al3+ (molc m–2)) were interpreted in relation to soil texture classes. Subsoil texture classes: Coarse: < 5 % clay; medium 5–10 % clay or (> 5 % silt or > 50 % fine sand), or fine > 10 % clay were evaluated as an indicator of forest soil quality. Base cation and phosphorus release decreased in the order fine > medium > coarse. Texture classes explained base cation release by about 80 % of total variation, and phosphorus release by 40–50 %. The base index generally increased by extraction time for sandy soils and decreased for loamy soils. This indicated that sandy soils released accumulated reactive aluminum in the 0–2 hour extraction. Subsoil texture class is suggested as a pedotransfer function for long‐term nutrient release potential in Danish forest soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.