Abstract

Angularly fused carbocyclic frameworks and their heteroatom-substituted analogues exist in many natural products that display a broad and interesting range of biological activities. Preparation of polycyclic products by cycloaddition reactions have been the long-standing hot topic in the synthetic community. Dehydro-Diels-Alder (DDA) reactions are one class of dehydropericyclic reactions that are derived conceptually by systematic removal of hydrogen atom pairs. A base-promoted tandem Michael addition and DDA reaction of α,α-dicyanoolefins with electron-deficient 1,3-conjugated enynes was realized in which a DDA reaction takes place between the arylalkynes and electron-deficient tetrasubstituted olefin. The control experiments support the stepwise anionic reaction pathway rather than the concerted reaction pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.