Abstract

The dechlorination pathways and detoxification mechanism of base-catalyzed decomposition (BCD) of hexachlorobenzene (HCB) with zero-valent iron were investigated. Results showed that HCB was effectively destructed using the BCD technology. The thorough dechlorination efficiencies of HCB (HDEs) improved with increasing reaction time and the addition of zero-valent iron. HCB remaining in the reaction system was almost 100% removed, and HDE reached 93% after 4 h at 360 °C with a zero-valent iron catalyst. The chlorinated intermediates contained pentachlorobenzene (PeCB), three tetrachlorobenzene (TeCB) isomers, three trichlorobenzene (TCB) isomers, three dichlorobenzene (DCB) isomers, and monochlorobenzene (MCB). The base-catalyzed dechlorination of HCB was observed as a stepwise dechlorination process. The main dechlorination pathway for HCB was proposed as HCB → PeCB → 1,2,3,5-TeCB → 1,2,4-TCB → 1,2-DCB → MCB. The residual HCB and chlorobenzenes were mainly distributed in the condensate and active carbon. Chlorobenzenes made up only 0.02% and 0.04% of the paraffin oil and residues, respectively. The innocuous treatment should be further considered for these trace amounts of chlorinated intermediate products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.