Abstract

Well-defined, bench stable Mn(I) non-pincer-type complexes were tested as earth-abundant transition metal catalysts for the selective reduction of CO2 to boryl-protected MeOH in the presence of pinacolborane (HBpin). Essentially, quantitative yields were obtained under mild reaction conditions (1 bar CO2, 60 °C), without the need of any base or additives, in the presence of the alkylcarbonyl Mn(I) bis(phosphine) complexes fac-[Mn(CH2CH2CH3)(dippe)(CO)3] [Mn1, dippe = 1,2-bis(diisopropylphosphino)ethane] and [Mn(dippe)(CO)2{(μ-H)2(Bpin)}] (Mn4), that is obtained by reaction of the bench-stable precatalyst Mn1 with HBpin via elimination of butanal. Preliminary mechanistic details were obtained by a combination of NMR experiments and monitoring of the catalytic reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call