Abstract

Fuji volcano is the largest active volcano in Japan, and consists of Ko-Fuji and Shin-Fuji volcanoes. Although basaltic in composition, small-volume pyroclastic flows have been repeatedly generated during the Younger stage of Shin-Fuji volcano. Deposits of those pyroclastic flows have been identified along multiple drainage valleys on the western flanks between 1,300 and 2,000 m a.s.l., and have been stratigraphically divided into the Shin-Fuji Younger pyroclastic flows (SYP) 1 to 4. Downstream debris flow deposits are found which contain abundant material derived from the pyroclastic flow deposits. The new14C ages for SYP1 to SYP4 are 3.2, 3.0, 2.9, and 2.5 ka, respectively, and correspond to a period where explosive summit eruptions generated many scoria fall deposits mostly toward the east. The SYP1 to SYP4 deposits consist of two facies: the massive facies is about 2 m thick and contains basaltic bombs of less than 50 cm in size, scoria lapilli, and fresh lithic basalt fragments supported in an ash matrix; the surge facies is represented by beds 1 to 15 cm thick, consisting mainly of ash with minor amount of fine lapilli. The bombs and scoria are 15 to 30% in volume within the massive facies. The ashes within the SYP deposits consist largely of comminuted basalt lithics and crystals that are derived from the Middle-stage lava flows exposed at the western flanks. SYP1 to SYP4 were only dispersed down the western flanks. The reason for this one-sided distribution is the asymmetric topography of the edifice; the western slopes of the volcano are the steepest (over 34 degrees). Most pyroclastic materials cannot rest stably on the slopes steeper than 33 degrees. Therefore, ejecta from the explosive summit eruptions that fell on the steep slopes tumbled down the slopes and were remobilized as high-temperature granular flows. These flows consisted of large pyroclastics and moved as granular avalanches along the valley bottom. Furthermore, the avalanching flows increased in volume by abrasion from the edifice and generated abundant ashes by the collision of clasts. The large amount of the fine material was presumably available within the transport system as the basal avalanches propagated below the angle of repose. Taking the typical kinetic friction coefficient of small pyroclastic flows, such flows could descend the western flanks where scattered houses are below 1,000 m a.s.l. A similar type of pyroclastic flow could result if explosive summit eruptions occur in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call