Abstract

AbstractAs a typical cellular lightweight material, foam concrete is produced by mixing cement, water, aggregate and a suitable foaming agent and has a density usually below 1600 kg/m3. The large number of air spaces present in foam concrete ensures that the concrete has advantages such as lightweight, high fluidity during pouring, excellent thermal and sound insulation, superior fire resistance, and outstanding energy absorption capacity. Its high porosity and the connectivity of the pores, which can allow the entry of negative substances into the concrete environment, cause foam concrete to have a very low physico‐mechanical and durability performance. To eliminate or reduce these disadvantages, this study adopted the use of basalt fibers (BF) as eco‐friendly fiber type and calcium aluminate cement (CAC) as aluminous cement with waste marble powder (WMP) as aggregates in foam concrete. In that respect, 9 mixes with varying content of foaming agent (FC) and basalt fiber have been prepared. Assessment of mechanical performance was based on compressive and flexural strength after 6 h, 1, 7, and 28 days. Dry bulk density, thermal conductivity, porosity, water absorption, and sorptivity of the concretes were determined. Durability characteristics of the concretes were examined by dry shrinkage, high temperature, magnesium sulfate, sulfuric, and hydrochloric acids. The obtained results showed that the content of BF affected the compressive strength of the mixtures slightly negatively or positively depending on the FC. The lowest value in thermal conductivity was gained as 0.645 (W/m K) for the mixture incorporating 1% BF and 50 kg/m3 foam quantity. In addition, the foam concrete incorporating foam of 30 kg/m3 and 1% BF showed the best resistance against MgSO4. The mixture with 2% BF and 30 kg/m3 FC exhibited the lowest mass loss after HCI exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.