Abstract

In this study, we selected basalt fiber (BF) as a functional filler to improve the mechanical properties of ethylene vinyl acetate (EVA)-based flame retardant materials. Firstly, BF was modified by grafting γ-aminopropyl triethoxysilane (KH550). Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) were used to comprehensively prove the successful modification of the BF surface. Subsequently, the modified BF was introduced into the EVA/magnesium hydroxide (MH) composites by melt blending. The limiting oxygen index (LOI), UL-94, cone calorimeter test, tensile test, and non-notched impact test were utilized to characterize both the flame retardant properties and mechanical properties of the EVA/MH composites. It was found that the mechanical properties were significantly enhanced without reducing the flame retardant properties of the EVA/MH composites. Notably, the surface treatment with silane is a simple and low-cost method for BF surface modification and the pathway designed in this study can be both practical and effective for polymer performance enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call