Abstract
Transactivation domains (TADs) are able to contact several components of the basal transcription apparatus and co-activator molecules. In order to study these interactions in biophysical detail, binding of the well-characterized TAD from the human transcription factor NF-kappaB p65 (RelA) to the basal transcription factors TBP and TFIIB and the viral co-activator protein E1A 13S was chosen as a model system to investigate the kinetics and affinities of such protein-protein interactions by surface plasmon resonance analysis. The TAD of NF-kappaB p65 showed remarkably different affinities and kinetics in binding to the various proteins. The real-time kinetic measurements revealed an association rate constant (kass) of 2.3 x 10(6)/M/s for the interaction between the p65 TAD and TBP. The association rate constants of the p65 TAD were much weaker for TFIIB (6.8 x 10(4)/M/s) and for the E1A 13S protein (4.9 x 10(4)/M/s). The dissociation rate constants (kdiss) were determined to be 7.9 x 10(-4)/s for TBP, 1.6 x 10(-3)/s for TFIIB and 1.3 x 10(-3)/s for the E1A protein. Accordingly, the calculated dissociation constants (Kd) differed between 3.4 x 10(-10)M for the strongly binding TBP protein and 2.3 x 10(-8)M and 2.6 x 10(-8)M for the weaker binding TFIIB and E1A 13S proteins respectively. Non-linear analysis of the appropriate part of the sensorgrams revealed monophasic association and dissociation kinetics for binding between the p65 TAD and all three interaction partners. The remarkable differences in protein affinities add another aspect to a more detailed understanding of formation of the transcription preinitiation complex. The co-transfection of TBP and E1A 13S stimulated NF-kappaB p65-dependent gene expression, showing the biological significance of these interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.