Abstract

To understand orthodontic tooth movement and determine optimal orthodontic force from a biological viewpoint, nitric oxide production in cultured human periodontal ligament fibroblasts was measured at varying levels of hydraulic pressure. The fibroblasts in a culture flask were exposed to the controlled change in hydraulic pressure, and intracellular nitric oxide levels were measured in real time by a nitric oxide-binding fluorescent dye, diaminofluorescein-2. The fibroblasts produced a significantly larger amount of nitric oxide at the pressure of 75 and 100 mmHg, compared with the pressure of 0, 25, and 50 mmHg ( P < .0001, one-way ANOVA, and P < .05, Tukey-Kramer test). Immunohistochemically, the cultured fibroblasts expressed brain nitric oxide synthase. The pressure level to enhance nitric oxide production was comparable to the magnitude of clinically used orthodontic force (80 g/cm 2). Nitric oxide might be a key regulator in orthodontic tooth movement. (Am J Orthod Dentofacial Orthop 2000;117:474-8)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.