Abstract

Few studies have investigated the impact of basal metabolic rate (BMR) on the development of urolithiasis, and the causal relationship is yet to be established. In this study, a two-sample Mendelian randomization (MR) analysis was utilized to identify the causal relationship between BMR and risk of urolithiasis. Genetic instruments for BMR were drawn from a public genome-wide association study (GWAS). Summary dates on BMR and urolithiasis were obtained from a GWAS meta-analysis with sample sizes of 454,874 and 212,453, respectively. The inverse-variance weighted (IVW) method was provided as the main approach to estimate the causal relationship. The weighted-median method and the MR-Egger method were used as supplements to the IVW method. In addition, we conducted sensitivity analyses, including heterogeneity tests, pleiotropy tests and leave-one-out analysis, to assess the robustness of the outcomes. Furthermore, the funnel plot asymmetry was visually inspected to evaluate possible bias. The inverse-variance weighted data revealed that genetically predicted BMR significantly decreased the risk of urolithiasis [beta coefficient (beta): - 0.2366, odds ratio (OR): 0.7893, 95% confidence interval (CI) 0.6504-0.9579, p = 0.0166]. BMR has causal effects on urolithiasis in an MR study, and the risk of urolithiasis in patients with lower levels of BMR is higher.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call