Abstract

AbstractFrom temperature measurements down through the 3001 m deep borehole at the North Greenland Icecore Project (NorthGRIP) drill site, it is now clear that the ice at the base, 3080 m below the surface, is at the pressure-melting point. This is supported by the measurements on the ice core where the annual-layer thicknesses show there is bottom melting at the site and upstream from the borehole. Surface velocity measurements, internal radio-echo layers, borehole and ice-core data are used to constrain a time-dependent flow model simulating flow along the north-northwest-trending ice-ridge flow-line, leading to the NorthGRIP site. Also time-dependent melt rates along the flowline are calculated with a heat-flow model. The results show the geothermal heat flow varies from 50 to 200 mW m–2 along the 100km section of the modeled flowline. The melt rate at the NorthGRIP site is 0.75 cm a–1, but the deep ice in the NorthGRIP core originated 50 km upstream and has experienced melt rates as high as 1.1 cm a–1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.