Abstract

Formation of the otocyst from the otic placode appears to differ from invagination of other cup-shaped organ primordia. It is known that the cellular cytoskeleton plays a limited role in otic placode invagination, whilst the extracellular matrix underlying the otic primordium intervenes in the folding process. In this study we have analysed the role of the basal lamina heparan sulphate proteoglycan in otic primordium invagination. At 10 H.H. stage, heparan sulphate proteoglycan immunomarking begins to appear on the otic placode basal lamina, increasing noticeably at 13 H.H. stage, coinciding with maximum folding of the otic epithelium, and is still present at later stages. Enzyme degradation of heparan sulphate proteoglycan in the otic primordium basal lamina, by means of microinjection with heparinase III prior to folding, significantly disrupts invagination of the otic placode, which remains practically flat, with a significant reduction in the depth of the otic pit and an increase in the diameter of the otic opening. The immunocytochemistry analysis revealed a notable depletion of basal lamina heparan sulphate proteoglycan in the otic primordia microinjected with heparinase, with no statistically significant differences observed in the volume or rate of cell proliferation in the otic epithelium relative to the control, which suggests that heparan sulphate proteoglycan disruption does not interfere with the epithelial growth. In addition, a study of apoptosis distribution by the TUNEL method confirmed that treatment with heparinase does not cause interference with cell survival in the otic epithelium. Our findings support the theory that otic primordium invagination may be regulated, at least in part, by the basal lamina components, which might contribute towards anchoring the otic epithelium to adjacent structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.