Abstract
This paper reviews observational evidence concerning the existence of so-calledbasal heating that occurs in the outer atmospheres of all stars with convective envelopes. Effects of basal heating depend primarily on the effective temperature, with little sensitivity to surface gravity or elemental abundances. Basal heating occurs predominantly in the chromosphere, possibly in the (lower) transition region, but not at an observable level in coronae (except perhaps in early F-type and in M-type dwarf stars). Basal fluxes are observed in the slowest rotators where it shows no significant modulation. The basal flux level is observed directly on the Sun only over regions void of intrinsically strong photospheric fields. There is substantial quantitative observational and theoretical evidence that the basal emission from stellar outer atmospheres is caused by the dissipation of acoustic waves generated by turbulent convection. The magnetic canopy turns out to be of little consequence, but effects of intrinsically weak fields on the basal mechanism cannot be entirely ruled out. Solar observations constrain the spatio-temporal character of the basal atmosphere and the acoustic flux levels as a function of height, resulting in a model in which intermittent wave dissipation causes emission characteristic of both cool and warm atmospheric areas, in which — at least in the solar case — a time-averaged chromospheric temperature rise may not even exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.