Abstract

ABSTRACT Basal ganglia (BG) are a widely recognized neural basis for action selection, but its decision-making mechanism is still a difficult problem for researchers. Therefore, we constructed a spiking neural network inspired by the BG anatomical data. Simulation experiments were based on the principle of dis-inhibition and our functional hypothesis within the BG: the direct pathway, the indirect pathway, and the hyper-direct pathway of the BG jointly implement the initiation execution and termination of motor programs. Firstly, we studied the dynamic process of action selection with the network, which contained intra-group competition and inter-group competition. Secondly, we focused on the effects of the stimulus intensity and the proportion of excitation and inhibition on the GPi/SNr. The results suggested that inhibition and excitation shape action selection. They also explained why the firing rate of GPi/SNr did not continue to increase in the action-selection experiment. Finally, we discussed the experimental results with the functional hypothesis. Uniquely, this paper summarized the decision-making neural mechanism of action selection based on the direct pathway, the indirect pathway, and the hyper-direct pathway within BG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call