Abstract
Insect wings are adaptive structures that automatically respond to flight forces, surpassing even cutting-edge engineering shape-morphing systems. A widely accepted but not yet explicitly tested hypothesis is that a 3D component in the wing’s proximal region, known as basal complex, determines the quality of wing shape changes in flight. Through our study, we validate this hypothesis, demonstrating that the basal complex plays a crucial role in both the quality and quantity of wing deformations. Systematic variations of geometric parameters of the basal complex in a set of numerical models suggest that the wings have undergone adaptations to reach maximum camber under loading. Inspired by the design of the basal complex, we develop a shape-morphing mechanism that can facilitate the shape change of morphing blades for wind turbines. This research enhances our understanding of insect wing biomechanics and provides insights for the development of simplified engineering shape-morphing systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.