Abstract

The proton mass arises from spontaneous breaking of chiral symmetry and the formation of constituent quarks. Their dynamics cannot be tested by proton tomography but only by studying excited baryons. However, the number of excited baryons is much smaller than expected within quark models; even worse, the existence of many known states has been challenged in a recent analysis which includes - compared to older analyses - high-precision data from meson factories. Hence $\pi N$ elastic scattering data do not provide a well-founded starting point of any phenomenological analysis of the baryon excitation spectrum. Photoproduction experiments now start to fill in this hole. Often, they confirm the old findings and even suggest a few new states. These results encourage attempts to compare the pattern of observed baryon resonances with predictions from quark models, from models generating baryons dynamically from meson-nucleon scattering amplitudes, from models based on gravitational theories, and with the conjecture that chiral symmetry may be restored at high excitation energies. Best agreement is found with a simple mass formula derived within AdS/QCD. Consequences for our understanding of QCD are discussed as well as experiments which may help to decide on the validity of models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.