Abstract

An effective quark Lagrangian is derived from first principles through bilocal gluon field correlators. It is used to write down equations for baryons, containing both perturbative and nonperturbative fields. As a result one obtains magnetic moments of octet and decuplet baryons without introduction of constituent quark masses and using only string tension as an input. Magnetic moments come out on average in reasonable agreement with experiment, except for nucleons and $\Sigma^-$. The predictions for the proton and neutron are shown to be in close agreement with the empirical values once we choose the string tension such to yield the proper nucleon mass. Pionic corrections to the nucleon magnetic moments have been estimated. In particular, the total result of the two-body current contributions are found to be small. Inclusion of the anomalous magnetic moment contributions from pion and kaon loops leads to an improvement of the predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call