Abstract
We study the stellar, Brightest Cluster Galaxy (BCG) and intracluster medium (ICM) masses of 14 South Pole Telescope (SPT) selected galaxy clusters with median redshift $z=0.9$ and median mass $M_{500}=6\times10^{14}M_{\odot}$. We estimate stellar masses for each cluster and BCG using six photometric bands spanning the range from the ultraviolet to the near-infrared observed with the VLT, HST and Spitzer. The ICM masses are derived from Chandra and XMM-Newton X-ray observations, and the virial masses are derived from the SPT Sunyaev-Zel'dovich Effect signature. At $z=0.9$ the BCG mass $M_{\star}^{\textrm{BCG}}$ constitutes $0.12\pm0.01$% of the halo mass for a $6\times10^{14}M_{\odot}$ cluster, and this fraction falls as $M_{500}^{-0.58\pm0.07}$. The cluster stellar mass function has a characteristic mass $M_{0}=10^{11.0\pm0.1}M_{\odot}$, and the number of galaxies per unit mass in clusters is larger than in the field by a factor $1.65\pm0.2$. Both results are consistent with measurements on group scales and at lower redshift. We combine our SPT sample with previously published samples at low redshift that we correct to a common initial mass function and for systematic differences in virial masses. We then explore mass and redshift trends in the stellar fraction (fstar), the ICM fraction (fICM), the cold baryon fraction (fc) and the baryon fraction (fb). At a pivot mass of $6\times10^{14}M_{\odot}$ and redshift $z=0.9$, the characteristic values are fstar=$1.1\pm0.1$%, fICM=$9.6\pm0.5$%, fc=$10.4\pm1.2$% and fb=$10.7\pm0.6$%. These fractions all vary with cluster mass at high significance, indicating that higher mass clusters have lower fstar and fc and higher fICM and fb. When accounting for a 15% systematic virial mass uncertainty, there is no statistically significant redshift trend at fixed mass in these baryon fractions. (abridged)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.